Dissociable roles of the dorsal striatum and dorsal hippocampus in conditional discrimination and spatial alternation T-maze tasks.

نویسندگان

  • Henry L Hallock
  • Adrian C Arreola
  • Crystal L Shaw
  • Amy L Griffin
چکیده

The roles of the dorsal hippocampus (DH) and dorsal striatum (DS) in the learning and retention of conditional discrimination (CD) rules is a subject of debate. Although previous studies have examined the relationship between the DH and DS and the performance of CD tasks in operant chambers, the relative contributions of these two brain regions to the retention of CD rules requiring an association between a cue and a spatial location have not been characterized. We designed an experiment to assess the roles of the DH and DS in the retention of a visuospatial CD task by transiently inactivating either structure with muscimol in separate groups of rats and measuring performance on a previously learned CD task. The performance of two other groups of rats on a previously learned delayed spatial alternation (DA) task was also measured following inactivation of either DS or DH, which allowed us to control for any possibly confounding effects of spatial cues present in the testing room, length of the intertrial interval period on the performance of the CD task, and muscimol on sensorimotor or motivational processing. Muscimol inactivation of dorsal striatum, but not dorsal hippocampus, impaired CD performance, while inactivation of dorsal hippocampus, but not dorsal striatum impaired DA performance. These results demonstrate a double dissociation between the roles of the DH and DS in these two tasks, and provide a systematic characterization of the relationship between these two brain areas and CD performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of the rat dorsal striatum impairs performance in spatial tasks and alters hippocampal theta in the freely moving rat.

We analysed the interaction between the dorsal striatum (motor coordination and planning) and the hippocampus (sensory information processing and integration) during performance of goal-directed tasks. The performance of rats that had been injected with different doses of the D(2)-antagonist Sulpiride into the dorsal striatum was tested in an egocentric 4-arm maze task that tests striatal funct...

متن کامل

CALL FOR PAPERS Decision Making: Neural Mechanisms Hippocampus and subregions of the dorsal striatum respond differently to a behavioral strategy change on a spatial navigation task

Regier PS, Amemiya S, Redish AD. Hippocampus and subregions of the dorsal striatum respond differently to a behavioral strategy change on a spatial navigation task. J Neurophysiol 114: 1399–1416, 2015. First published June 18, 2015; doi:10.1152/jn.00189.2015.— Goal-directed and habit-based behaviors are driven by multiple but dissociable decision making systems involving several different brain...

متن کامل

Dynamic coding of dorsal hippocampal neurons between tasks that differ in structure and memory demand.

Hippocampal place fields show remapping between environments that contain sufficiently different contextual features, a phenomenon that may reflect a mechanism for episodic memory formation. Previous studies have shown that place fields remap to changes in the configuration of visual landmarks in an environment. Other experiments have demonstrated that remapping can occur with experience, even ...

متن کامل

Spatial Learning and Memory in Barnes Maze Test and Synaptic Potentiation in ‎Schaffer Collateral-CA1 Synapses of Dorsal Hippocampus in Freely Moving Rats

Introduction: Synaptic plasticity has been suggested as the primary physiological mechanism underlying memory formation. Many experimental approaches have been used to investigate whether the mechanisms underlying long-term potentiation (LTP) are activated during learning. Nevertheless, little evidence states that hippocampal-dependent learning triggers synaptic plasticity. In this study, we in...

متن کامل

Hippocampus and subregions of the dorsal striatum respond differently to a behavioral strategy change on a spatial navigation task.

Goal-directed and habit-based behaviors are driven by multiple but dissociable decision making systems involving several different brain areas, including the hippocampus and dorsal striatum. On repetitive tasks, behavior transitions from goal directed to habit based with experience. Hippocampus has been implicated in initial learning and dorsal striatum in automating behavior, but recent studie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurobiology of learning and memory

دوره 100  شماره 

صفحات  -

تاریخ انتشار 2013